Inhoudsopgave:
2025 Auteur: John Day | [email protected]. Laatst gewijzigd: 2025-01-23 15:01
TMP112 Hoognauwkeurige, energiezuinige, digitale temperatuursensor I2C MINI-module. De TMP112 is ideaal voor uitgebreide temperatuurmetingen. Dit apparaat biedt een nauwkeurigheid van ±0,5°C zonder kalibratie of signaalconditionering van externe componenten.
In deze tutorial wordt de interface van de TMP112-sensormodule met raspberry pi gedemonstreerd en is ook de programmering met Java-taal geïllustreerd. Om de temperatuurwaarden uit te lezen hebben we raspberry pi gebruikt met een I2c-adapter. Deze I2C-adapter maakt de aansluiting op de sensormodule eenvoudig en betrouwbaarder.
Stap 1: Benodigde hardware:
De materialen die we nodig hebben om ons doel te bereiken, omvatten de volgende hardwarecomponenten:
1. TMP112
2. Raspberry Pi
3. I2C-kabel
4. I2C Shield voor Raspberry Pi
Stap 2: Hardware-aansluiting:
De hardware-aansluitingssectie legt in feite de bedradingsverbindingen uit die nodig zijn tussen de sensor en de Raspberry Pi. Zorgen voor correcte verbindingen is de basisbehoefte bij het werken aan elk systeem voor de gewenste output. De vereiste verbindingen zijn dus als volgt:
De TMP112 werkt via I2C. Hier is het voorbeeldbedradingsschema, dat laat zien hoe elke interface van de sensor moet worden aangesloten.
Out-of-the-box, het bord is geconfigureerd voor een I2C-interface, daarom raden we aan om deze aansluiting te gebruiken als je verder agnostisch bent. Alles wat je nodig hebt zijn vier draden!
Er zijn slechts vier aansluitingen nodig Vcc, Gnd, SCL en SDA-pinnen en deze worden verbonden met behulp van I2C-kabel.
Deze verbindingen worden gedemonstreerd in de bovenstaande afbeeldingen.
Stap 3: Java-code voor temperatuurmeting:
Het voordeel van het gebruik van raspberry pi is dat het je de flexibiliteit biedt van de programmeertaal waarin je het bord wilt programmeren om de sensor ermee te verbinden. Gebruikmakend van dit voordeel van dit bord, demonstreren we hier het programmeren in Java. De java-code voor TMP112 kan worden gedownload van onze GitHub-community, de Dcube Store.
Naast het gemak van de gebruikers leggen we de code hier ook uit:
Als eerste stap van het coderen moet je de pi4j-bibliotheek downloaden in het geval van java, omdat deze bibliotheek de functies ondersteunt die in de code worden gebruikt. Dus om de bibliotheek te downloaden, kunt u de volgende link bezoeken:
pi4j.com/install.html
U kunt hier ook de werkende Java-code voor deze sensor kopiëren:
com.pi4j.io.i2c. I2CBus importeren;
com.pi4j.io.i2c. I2CDevice importeren;
importeer com.pi4j.io.i2c. I2CFactory;
import java.io. IOException;
openbare klasse TMP112
{
public static void main(String args) gooit Exception
{
// I2C-bus maken
I2CBus-bus = I2CFactory.getInstance(I2CBus. BUS_1);
// Krijg I2C-apparaat, TMP112 I2C-adres is 0x48(72)
I2CDevice-apparaat = bus.getDevice (0x48);
byte config = nieuwe byte[2];
// Continue conversiemodus, 12-bits resolutie, foutwachtrij is 1
config[0] = (byte)0x60;
// Polariteit laag, thermostaat in vergelijkingsmodus, schakelt uitschakelmodus uit
config [1] = (byte)0xA0;
// Schrijf config om 0x01(1) te registreren
apparaat.schrijven (0x01, config, 0, 2);
Draad.slaap(500);
// Lees 2 bytes aan gegevens van adres 0x00 (0), eerst msb
byte data = nieuwe byte[2];
apparaat.lezen (0x00, data, 0, 2);
// Gegevens converteren
int temp = (((data[0] & 0xFF) * 256) + (data[1] & 0xFF))/16;
als (temperatuur > 2047)
{
temperatuur -= 4096;
}
dubbele cTemp = temp * 0,0625;
dubbele fTemp = cTemp * 1.8 + 32;
// Uitvoer naar scherm
System.out.printf("Temperatuur in Celsius is: %.2f C %n", cTemp);
System.out.printf("Temperatuur in Fahrenheit is: %.2f F %n", fTemp);
}
}
De bibliotheek die i2c-communicatie tussen de sensor en het bord mogelijk maakt, is pi4j, de verschillende pakketten I2CBus, I2CDevice en I2CFactory helpen om de verbinding tot stand te brengen.
com.pi4j.io.i2c. I2CBus importeren;com.pi4j.io.i2c. I2CDevice importeren; importeer com.pi4j.io.i2c. I2CFactory; import java.io. IOException;
De functies write() en read() worden gebruikt om bepaalde opdrachten naar de sensor te schrijven om deze in een bepaalde modus te laten werken en om respectievelijk de sensoruitvoer te lezen.
De output van de sensor wordt ook getoond in de afbeelding hierboven.
Stap 4: Toepassingen:
Verschillende toepassingen met TMP112 low power, hoge nauwkeurigheid digitale temperatuursensor omvatten voeding temperatuurbewaking, computer perifere thermische beveiliging, batterijbeheer en kantoormachines.
Aanbevolen:
Temperatuurmeting met AD7416ARZ en Raspberry Pi: 4 stappen:
Meting van temperatuur met behulp van AD7416ARZ en Raspberry Pi: AD7416ARZ is een 10-bits temperatuursensor met vier enkelkanaals analoog naar digitaal converters en een ingebouwde temperatuursensor erin. De temperatuursensor op de onderdelen is toegankelijk via multiplexerkanalen. Deze zeer nauwkeurige temp
Temperatuurmeting met TMP112 en Arduino Nano: 4 stappen
Temperatuurmeting met TMP112 en Arduino Nano: TMP112 zeer nauwkeurige, energiezuinige, digitale temperatuursensor I2C MINI-module. De TMP112 is ideaal voor uitgebreide temperatuurmetingen. Dit apparaat biedt een nauwkeurigheid van ±0,5°C zonder kalibratie of signaalconditionering van externe componenten.Ik
Temperatuurmeting met STS21 en Raspberry Pi: 4 stappen
Temperatuurmeting met behulp van STS21 en Raspberry Pi: STS21 digitale temperatuursensor biedt superieure prestaties en een ruimtebesparende voetafdruk. Het levert gekalibreerde, gelineariseerde signalen in digitaal, I2C-formaat. De fabricage van deze sensor is gebaseerd op CMOSens-technologie, wat bijdraagt aan de superieure
Temperatuurmeting met TMP112 en Particle Photon: 4 stappen
Temperatuurmeting met TMP112 en Particle Photon: TMP112 Hoognauwkeurige, energiezuinige, digitale temperatuursensor I2C MINI-module. De TMP112 is ideaal voor uitgebreide temperatuurmetingen. Dit apparaat biedt een nauwkeurigheid van ±0,5°C zonder kalibratie of signaalconditionering van externe componenten.Ik
Vochtigheids- en temperatuurmeting met HIH6130 en Raspberry Pi: 4 stappen:
Vochtigheids- en temperatuurmeting met behulp van HIH6130 en Raspberry Pi: HIH6130 is een vochtigheids- en temperatuursensor met digitale uitgang. Deze sensoren bieden een nauwkeurigheidsniveau van ±4% RV. Met toonaangevende stabiliteit op lange termijn, echte temperatuurgecompenseerde digitale I2C, toonaangevende betrouwbaarheid, energie-efficiëntie