Inhoudsopgave:
- Stap 1: Benodigde hardware:
- Stap 2: Hardware-aansluiting:
- Stap 3: Code voor temperatuur- en vochtigheidsmeting:
- Stap 4: Toepassingen:
Video: Meting van temperatuur en vochtigheid met HDC1000 en Arduino Nano: 4 stappen
2024 Auteur: John Day | [email protected]. Laatst gewijzigd: 2024-01-30 11:16
De HDC1000 is een digitale vochtigheidssensor met geïntegreerde temperatuursensor die een uitstekende meetnauwkeurigheid biedt bij een zeer laag vermogen. Het apparaat meet de vochtigheid op basis van een nieuwe capacitieve sensor. De vochtigheids- en temperatuursensoren zijn in de fabriek gekalibreerd. Het is functioneel binnen het volledige temperatuurbereik van -40 °C tot +125 °C.
In deze tutorial is de interface van de HDC1000-sensormodule met arduino nano geïllustreerd. Om de temperatuur- en vochtigheidswaarden uit te lezen, hebben we arduino gebruikt met een I2c-adapter. Deze I2C-adapter maakt de verbinding met de sensormodule eenvoudig en betrouwbaarder.
Stap 1: Benodigde hardware:
De materialen die we nodig hebben om ons doel te bereiken, omvatten de volgende hardwarecomponenten:
1. HDC1000
2. Arduino Nano
3. I2C-kabel
4. I2C-schild voor Arduino Nano
Stap 2: Hardware-aansluiting:
De hardware-aansluitingssectie legt in feite de bedradingsverbindingen uit die nodig zijn tussen de sensor en de arduino nano. Zorgen voor correcte verbindingen is de basisbehoefte bij het werken aan elk systeem voor de gewenste output. De vereiste verbindingen zijn dus als volgt:
De HDC1000 werkt via I2C. Hier is het voorbeeldbedradingsschema, dat laat zien hoe elke interface van de sensor moet worden aangesloten.
Out-of-the-box, het bord is geconfigureerd voor een I2C-interface, daarom raden we aan om deze aansluiting te gebruiken als je verder agnostisch bent.
Alles wat je nodig hebt zijn vier draden! Er zijn slechts vier aansluitingen nodig Vcc, Gnd, SCL en SDA-pinnen en deze worden verbonden met behulp van I2C-kabel.
Deze verbindingen worden gedemonstreerd in de bovenstaande afbeeldingen.
Stap 3: Code voor temperatuur- en vochtigheidsmeting:
Laten we nu beginnen met de arduino-code.
Tijdens het gebruik van de sensormodule met de arduino, nemen we de Wire.h-bibliotheek op. De "Wire"-bibliotheek bevat de functies die de i2c-communicatie tussen de sensor en het arduino-bord vergemakkelijken.
De volledige arduino-code wordt hieronder gegeven voor het gemak van de gebruiker:
#erbij betrekken
// HDC1000 I2C-adres is 0x40(64)
#define Addr 0x40
ongeldige setup()
{
// Initialiseer I2C-communicatie als MASTER
Draad.begin();
// Initialiseer seriële communicatie, stel baudrate in = 9600
Serieel.begin(9600);
// Start I2C-communicatie
Wire.beginTransmission (Addr);
// Selecteer configuratieregister
Draad.schrijven (0x02);
// Temperatuur, vochtigheid ingeschakeld, resolutie = 14-bits, verwarming aan
Draad.schrijven (0x30);
// Stop I2C-verzending
Wire.endTransmission();
vertraging (300);
}
lege lus()
{
niet-ondertekende int-gegevens[2];
// Start I2C-communicatie
Wire.beginTransmission (Addr);
// Stuur opdracht voor temperatuurmeting
Draad.schrijven (0x00);
// Stop I2C-verzending
Wire.endTransmission();
vertraging (500);
// Vraag 2 bytes aan gegevens aan
Wire.requestFrom(Addr, 2);
// Lees 2 bytes aan gegevens
// temp msb, temp lsb
if (Draad.beschikbaar() == 2)
{
data[0] = Draad.lezen();
data[1] = Draad.lezen();
}
// Converteer de gegevens
int temp = (data[0] * 256) + data[1];
zweven cTemp = (temp / 65536.0) * 165,0 - 40;
float fTemp = cTemp * 1.8 + 32;
// Start I2C-communicatie
Wire.beginTransmission (Addr);
// Stuur opdracht voor vochtigheidsmeting
Draad.schrijven (0x01);
// Stop I2C-verzending
Wire.endTransmission();
vertraging (500);
// Vraag 2 bytes aan gegevens aan
Wire.requestFrom(Addr, 2);
// Lees 2 bytes aan gegevens
// vochtigheid msb, vochtigheid lsb
if (Draad.beschikbaar() == 2)
{
data[0] = Draad.lezen();
data[1] = Draad.lezen();
}
// Converteer de gegevens
vlottervochtigheid = (data[0] * 256) + data[1];
vochtigheid = (vochtigheid / 65536.0) * 100,0;
// Gegevens uitvoeren naar seriële monitor
Serial.print("Relatieve vochtigheid:");
Seriële.afdruk (vochtigheid);
Serial.println(" %RH");
Serial.print ("Temperatuur in Celsius:");
Serieel.print(cTemp);
Serieel.println("C");
Serial.print("Temperatuur in Fahrenheit:");
Serieel.print(fTemp);
Serieel.println ("F");
vertraging (500);
}
In de draadbibliotheek worden Wire.write() en Wire.read() gebruikt om de commando's te schrijven en de sensoruitgang te lezen.
Serial.print() en Serial.println() worden gebruikt om de output van de sensor op de seriële monitor van de Arduino IDE weer te geven.
De output van de sensor wordt getoond in de afbeelding hierboven.
Stap 4: Toepassingen:
HDC1000 kan worden gebruikt in verwarming, ventilatie en airconditioning (HVAC), Slimme Thermostaten en Kamermonitoren. Deze sensor vindt ook zijn toepassing in printers, handmeters, medische apparaten, vrachtvervoer en autoruitontwaseming.
Aanbevolen:
Meting van temperatuur met behulp van ADT75 en Arduino Nano: 4 stappen
Temperatuurmeting met ADT75 en Arduino Nano: ADT75 is een zeer nauwkeurige, digitale temperatuursensor. Het bestaat uit een bandgap-temperatuursensor en een 12-bits analoog-naar-digitaalomzetter voor het bewaken en digitaliseren van de temperatuur. Zijn zeer gevoelige sensor maakt hem competent genoeg voor mij
Meting van vochtigheid en temperatuur met behulp van HIH6130 en Particle Photon - Ajarnpa
Meting van vochtigheid en temperatuur met behulp van HIH6130 en Particle Photon: HIH6130 is een vochtigheids- en temperatuursensor met digitale uitgang. Deze sensoren bieden een nauwkeurigheidsniveau van ±4% RV. Met toonaangevende stabiliteit op lange termijn, echte temperatuurgecompenseerde digitale I2C, toonaangevende betrouwbaarheid, energie-efficiëntie
Meting van temperatuur en vochtigheid met HDC1000 en Particle Photon: 4 stappen
Meting van temperatuur en vochtigheid met HDC1000 en Particle Photon: De HDC1000 is een digitale vochtigheidssensor met geïntegreerde temperatuursensor die uitstekende meetnauwkeurigheid biedt bij een zeer laag stroomverbruik. Het apparaat meet de vochtigheid op basis van een nieuwe capacitieve sensor. De vochtigheids- en temperatuursensoren zijn fa
Meting van temperatuur en vochtigheid met HDC1000 en Raspberry Pi: 4 stappen:
Meting van temperatuur en vochtigheid met HDC1000 en Raspberry Pi: De HDC1000 is een digitale vochtigheidssensor met geïntegreerde temperatuursensor die een uitstekende meetnauwkeurigheid biedt bij een zeer laag vermogen. Het apparaat meet de vochtigheid op basis van een nieuwe capacitieve sensor. De vochtigheids- en temperatuursensoren zijn fa
Meting van vochtigheid en temperatuur met behulp van HTS221 en Particle Photon: 4 stappen
Vocht- en temperatuurmeting met HTS221 en Particle Photon: HTS221 is een ultracompacte capacitieve digitale sensor voor relatieve vochtigheid en temperatuur. Het bevat een detectie-element en een mixed signal application specific integrated circuit (ASIC) om de meetinformatie te leveren via digitale seriële