Meting van vochtigheid en temperatuur met behulp van HTS221 en Particle Photon: 4 stappen
Meting van vochtigheid en temperatuur met behulp van HTS221 en Particle Photon: 4 stappen
Anonim
Image
Image

HTS221 is een ultracompacte capacitieve digitale sensor voor relatieve vochtigheid en temperatuur. Het bevat een detectie-element en een mixed signal application specific integrated circuit (ASIC) om de meetinformatie te leveren via digitale seriële interfaces. Geïntegreerd met zoveel functies is dit een van de meest geschikte sensoren voor kritische vochtigheids- en temperatuurmetingen.

In deze tutorial is de interface van de HTS221-sensormodule met deeltjesfoton geïllustreerd. Om de vochtigheids- en temperatuurwaarden uit te lezen, hebben we deeltjes met een I2c-adapter gebruikt. Deze I2C-adapter maakt de aansluiting op de sensormodule eenvoudig en betrouwbaarder.

Stap 1: Benodigde hardware:

Benodigde hardware
Benodigde hardware
Benodigde hardware
Benodigde hardware
Benodigde hardware
Benodigde hardware

De materialen die we nodig hebben om ons doel te bereiken, omvatten de volgende hardwarecomponenten:

1. HTS221

2. Deeltjesfoton

3. I2C-kabel

4. I2C Shield voor deeltjesfoton

Stap 2: Hardware-aansluiting:

Hardware-aansluiting
Hardware-aansluiting
Hardware-aansluiting
Hardware-aansluiting

De hardware-aansluitingssectie legt in feite de bedradingsverbindingen uit die nodig zijn tussen de sensor en het deeltjesfoton. Zorgen voor correcte verbindingen is de basisbehoefte bij het werken aan elk systeem voor de gewenste output. De vereiste verbindingen zijn dus als volgt:

De HTS221 werkt via I2C. Hier is het voorbeeldbedradingsschema, dat laat zien hoe elke interface van de sensor moet worden aangesloten.

Out-of-the-box, het bord is geconfigureerd voor een I2C-interface, daarom raden we aan om deze aansluiting te gebruiken als je verder agnostisch bent.

Alles wat je nodig hebt zijn vier draden! Er zijn slechts vier aansluitingen nodig Vcc, Gnd, SCL en SDA-pinnen en deze worden verbonden met behulp van I2C-kabel.

Deze verbindingen worden gedemonstreerd in de bovenstaande afbeeldingen.

Stap 3: Code voor vochtigheids- en temperatuurmeting:

Code voor vochtigheids- en temperatuurmeting
Code voor vochtigheids- en temperatuurmeting

Laten we nu beginnen met de deeltjescode.

Terwijl we de sensormodule met het deeltje gebruiken, nemen we de bibliotheek application.h en spark_wiring_i2c.h op. "application.h" en spark_wiring_i2c.h bibliotheek bevat de functies die de i2c-communicatie tussen de sensor en het deeltje vergemakkelijken.

De volledige deeltjescode wordt hieronder gegeven voor het gemak van de gebruiker:

#erbij betrekken

#erbij betrekken

// HTS221 I2C-adres is 0x5F

#define Addr 0x5F

dubbele vochtigheid = 0,0;

dubbele cTemp = 0,0;

dubbele fTemp = 0,0;

int-temp = 0;

ongeldige setup()

{

// Variabele instellen

Particle.variable ("i2cdevice", "HTS221");

Particle.variable ("Vochtigheid", vochtigheid);

Particle.variable("cTemp", cTemp);

// Initialiseer I2C-communicatie als MASTER

Draad.begin();

// Initialiseer seriële communicatie, stel baudrate in = 9600

Serieel.begin(9600);

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Selecteer gemiddeld configuratieregister

Draad.schrijven (0x10);

// Gemiddelde temperatuurmonsters = 256, gemiddelde vochtigheidsmonsters = 512

Draad.schrijven (0x1B);

// Stop I2C-verzending

Wire.endTransmission();

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Selecteer controleregister1

Draad.schrijven (0x20);

// Stroom AAN, continue update, gegevensuitvoersnelheid = 1 Hz

Draad.schrijven (0x85);

// Stop I2C-verzending

Wire.endTransmission();

vertraging (300);

}

lege lus()

{

niet-ondertekende int-gegevens[2];

niet-ondertekende int val[4];

niet ondertekend int H0, H1, H2, H3, T0, T1, T2, T3, onbewerkt;

// Vochtigheidskalibratiewaarden

for(int i = 0; i < 2; i++)

{

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Wire.write((48 + i));

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

data = Wire.read();

}

}

// Vochtigheidsgegevens converteren

H0 = gegevens[0] / 2;

H1 = gegevens[1] / 2;

for(int i = 0; i < 2; i++)

{

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Wire.write((54 + i));

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

data = Wire.read();

}

}

// Vochtigheidsgegevens converteren

H2 = (gegevens[1] * 256,0) + gegevens[0];

for(int i = 0; i < 2; i++)

{

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Wire.write((58 + i));

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

data = Wire.read();

}

}

// Vochtigheidsgegevens converteren

H3 = (gegevens[1] * 256,0) + gegevens[0];

// Temperatuur kalibratie waarden

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Draad.schrijven (0x32);

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

T0 = Draad.lezen();

}

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Draad.schrijven (0x33);

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

T1 = Draad.lezen();

}

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Draad.schrijven (0x35);

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

onbewerkt = Draad.lezen();

}

onbewerkt = onbewerkt & 0x0F;

// Converteer de temperatuurkalibratiewaarden naar 10-bits

T0 = ((ruwe & 0x03) * 256) + T0;

T1 = ((ruwe & 0x0C) * 64) + T1;

for(int i = 0; i < 2; i++)

{

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Wire.write((60 + i));

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

data = Wire.read();

}

}

// Converteer de gegevens

T2 = (gegevens[1] * 256,0) + gegevens[0];

for(int i = 0; i < 2; i++)

{

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Wire.write((62 + i));

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 1 byte aan gegevens aan

Wire.requestFrom(Addr, 1);

// Lees 1 byte aan gegevens

if(Draad.beschikbaar() == 1)

{

data = Wire.read();

}

}

// Converteer de gegevens

T3 = (gegevens[1] * 256,0) + gegevens[0];

// Start I2C-verzending

Wire.beginTransmission (Addr);

// Gegevensregister verzenden

Draad.schrijven (0x28 | 0x80);

// Stop I2C-verzending

Wire.endTransmission();

// Vraag 4 bytes aan gegevens aan

Wire.requestFrom(Addr, 4);

// Lees 4 bytes aan gegevens

// vochtigheid msb, vochtigheid lsb, temp msb, temp lsb

if(Draad.beschikbaar() == 4)

{

val[0] = Draad.lezen();

val[1] = Draad.lezen();

val[2] = Draad.lezen();

val[3] = Draad.lezen();

}

// Converteer de gegevens

vochtigheid = (val[1] * 256,0) + val[0];

vochtigheid = ((1,0 * H1) - (1,0 * H0)) * (1,0 * vochtigheid - 1,0 * H2) / (1,0 * H3 - 1,0 * H2) + (1,0 * H0);

temp = (val[3] * 256) + val[2]; cTemp = (((T1 - T0) / 8.0) * (temp - T2)) / (T3 - T2) + (T0 / 8.0);

fTemp = (cTemp * 1.8) + 32;

// Gegevens uitvoeren naar dashboard

Particle.publish("Relatieve vochtigheid: ", String(vochtigheid));

vertraging (1000);

Particle.publish("Temperatuur in Celsius: ", String(cTemp));

vertraging (1000);

Particle.publish("Temperatuur in Fahrenheit: ", String(fTemp));

vertraging (1000);

}

De functie Particle.variable() maakt de variabelen om de uitvoer van de sensor op te slaan en de functie Particle.publish() geeft de uitvoer weer op het dashboard van de site.

De sensoruitgang wordt ter referentie in de afbeelding hierboven weergegeven.

Stap 4: Toepassingen:

Toepassingen
Toepassingen

HTS221 kan worden gebruikt in verschillende consumentenproducten zoals luchtbevochtigers en koelkasten enz. Deze sensor vindt ook zijn toepassing in een breder gebied, waaronder slimme domotica, industriële automatisering, beademingsapparatuur, het volgen van activa en goederen.

Aanbevolen: